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Abstract. We show that the Gersten derivation of Maxwell equations can be generalized. It
actually leads to additional solutions of ‘S = 1 equations’. They follow directly from previous
considerations by Majorana, Oppenheimer (Oppenheimer J R 1931 Phys. Rev. 38 725), Weinberg
(Weinberg S 1964 Phys. Rev. 134 B882) and Ogievetskiı̆ and Polubarinov (Ogievetskiı̆ V I and
Polubarinov I V 1966 Yadern. Fiz. 4 216 (Engl. Transl. 1967 Sov. J. Nucl. Phys. 4 156)).
Therefore, generalized Maxwell equations should be used as a guideline for proper interpretations
of quantum theories.

In his paper [1] Gersten studied the matrix representation of the Maxwell equations, both the
Faraday and Ampére laws and the Gauss law. His consideration is based on equation (9) of [1]:(

E2

c2
− p2

)
Ψ =

(
E

c
I (3) − p · S

)(
E

c
I (3) + p · S

)
Ψ −

(
px

py

pz

)
(p · Ψ) = 0. (1)

Furthermore, he claimed that the solutions to this equation should be found from the set(
E

c
I (3) + p · S

)
Ψ = 0 equation (10) of [1]

(p · Ψ) = 0 equation (11) of [1].

Thus, Gersten concluded that his equation (9) is equivalent to his Maxwell equations (10)
and (11). As he also correctly indicated, such a formalism for describing S = 1 fields has
been considered by several authors before. See, for instance, [2–10]; those authors mainly
considered the dynamical Maxwell equations in the matrix form.

However, we straightforwardly note that equation (9) of [1] is also satisfied under the
choice† (

E

c
I (3) + p · S

)
Ψ = pχ (2)

(p · Ψ) = E

c
χ (3)

with some arbitrary scalar function χ at this stage. This is due to the fact that‡

(p · S)jkpk = iεjikpipk ≡ 0

† We leave the analysis of possible functional nonlinear (in general) dependence of χ and ∂µχ on the higher-rank
tensor fields for future publications.
‡ See the explicit form of the angular momentum matrices in equation (6) of Gersten’s paper [1].
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(or after substitutions of quantum operators rot grad χ = 0). Thus, the generalized coordinate-
space Maxwell equations follow, after a similar procedure as in [1]:

∇ ×E = −1

c

∂B

∂t
+ ∇Im χ (4)

∇ ×B = 1

c

∂E

∂t
+ ∇Re χ (5)

∇ ·E = −1

c

∂

∂t
Re χ (6)

∇ ·B = 1

c

∂

∂t
Im χ. (7)

If one assumes that there are no monopoles, one may suggest that χ(x) is a real field and
its derivatives play the role of charge and current densities. Thus, surprisingly, on using the
Dirac-like procedure† of derivation of ‘free-space’ relativistic quantum field equations, Gersten
might in fact have come to the inhomogeneous Maxwell equations‡! Furthermore, I am not
aware of any proofs that the scalar field χ(x) must be firmly connected with the charge and
current densities, so there is sufficient room for interpretation. For instance, its time derivative
and gradient may also be interpreted as leading to the 4-vector potential. In this case, we need
some mass/length parameter as in Lyttleton and Bondi [11] and Chambers [11]. Both these
interpretations were present in the literature [9, 11] (cf also [12]).

Furthermore, Gersten’s equation (9), which is our equation (1), is satisfied also when(
E

c
I (3) − p · S

)
Ψ̃ = pχ̃ (8)

(p · Ψ̃) = E

c
χ̃ (9)

for some function Ψ̃ = C + iD. The corresponding Maxwell-like equations are

∇ ×C = −1

c

∂D

∂t
− ∇Im χ̃ (10)

∇ ×D = 1

c

∂C

∂t
+ ∇Re χ̃ (11)

∇ ·C = −1

c

∂

∂t
Re χ̃ (12)

∇ ·D = −1

c

∂

∂t
Im χ̃ . (13)

Unless χ̃ = χ∗ we cannot make the identification Ψ̃ = Ψ∗ = E + iB. Thus the general
solution of the ‘S = 1 equation’ is the superposition Ψtot = c1Ψ + c2Ψ̃, with Ψ and Ψ̃ being
the subject of constraints (4)–(7), (10)–(13). Moreover, from a physical point of view this

† That is to say, on the basis of the relativistic dispersion relations

(E2 − c2p2 − m2c4)� = 0 equation (1) of [1].

‡ One can also substitute −(4π ih̄/c)j and (−4π ih̄)ρ in the right-hand side of (2) and (3) of this paper and obtain
equations for the current and the charge density

1

c
∇ × j = 0

1

c2

∂j

∂t
+ ∇ρ = 0

which coincide with equations (13) and (17) of Dvoeglazov [9]. The interesting question is whether such defined j
and ρ may be related to ∂µχ .
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may signify that the present-day experimental unobservability of magnetic monopoles can
have a deeper theoretical reason in the mutual cancellation of the corresponding terms in the
divergence equation for the magnetic part of the total ‘S = 1’ field by means of appropriately
fixing the chi-functions.

Below we discuss only one aspect of the above-mentioned problem with additional scalar
field and its derivatives in generalizations of the Maxwell formalism. It is connected with the
concept of notoph of Ogievetskiı̆ and Polubarinov (in the US journal literature this is known as
the Kalb–Ramond field)†. The related problem of misunderstandings of the Weinberg theorem
B−A = λ is briefly discussed too; A and B are eigenvalues of angular momenta corresponding
to a certain representation of the Lorentz group and λ is the helicity [4, p B885].

Actually, after performing the Bargmann–Wigner procedure of description of higher-
spin massive particles by a totally symmetric spinor of higher rank, we derive the following
equations for spin 1:

∂αF
αµ +

m

2
Aµ = 0 (14)

2mFµν = ∂µAν − ∂νAµ. (15)

In the meantime, in the textbooks, the latter set is usually written as

∂αF
αµ + m2Aµ = 0 (16)

Fµν = ∂µAν − ∂νAµ. (17)

The set (16), (17) is obtained from (14), (15) after the normalization change Aµ → 2mAµ

or Fµν → 1
2mFµν . Of course, one can investigate other sets of equations with different

normalization of the Fµν and Aµ fields. ‘Are all these sets of equations equivalent?’ I asked
in a recent series of papers.

Ogievetskiı̆ and Polubarinov [13] argued that in the massless limit ‘the system of 2s + 1
states is no longer irreducible; it decomposes and describes a set of different particles with zero
mass and helicities ±s,±(s − 1), . . . ,±1, 0 (for integer spin and if parity is conserved; the
situation is analogous for half-integer spins)’. Thus, they did in fact contradict the Weinberg
theorem. But, in [15] I presented explicit forms of 4-vector potentials and of parts of the
antisymmetric tensor (AST) field and concluded that the question should be solved on the
basis of the analysis of normalization issues. Here they are in the momentum representation:

uµ(p, +1) = − N√
2m




pr

m + p1pr

Ep+m

im + p2pr

Ep+m
p3pr

Ep+m


 uµ(p,−1) = N√

2m




pl

m + p1pl

Ep+m

−im + p2pl

Ep+m
p3pl

Ep+m


 (18)

uµ(p, 0) = N

m




p3
p1p3

Ep+m
p2p3

Ep+m

m + p2
3

Ep+m


 uµ(p, 0t ) = N

m




Ep

p1

p2

p3


 (19)

and

B(+)(p, +1) = − iN

2
√

2m

(−ip3

p3

ipr

)
= +e−iα−1B(−)(p,−1) (20)

† In my opinion, Weinberg [14, p 208] partly confirmed this idea when considering a spin-0 4-vector field in his well
known book.
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B(+)(p, 0) = iN

2m
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0

)
= −e−iα0B(−)(p, 0) (21)

B(+)(p,−1) = iN

2
√
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)
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and
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2
√
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Ep+m
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Ep+m
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0E(−)(p, 0) (24)

E(+)(p,−1) = iN

2
√
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 Ep − p1pl

Ep+m

−iEp − p2pl

Ep+m

− p3pl

Ep+m


 = +e−iα′

+1E(−)(p, +1) (25)

where we denoted a normalization factor appearing in the definitions of the potentials (and/or in
the definitions of the physical fields through potentials) as N (which can, of course, be chosen
in an arbitrary way, not necessarily to be proportional to m)† and pr,l = p1±ip2. Thus, we find
that in the massless limit we may have in general divergent parts of 4-potentials and the AST
field, thus prohibiting setting m = 0 in the equations (14)–(17). They are usually removed
by ‘electrodynamic’ gauge transformations, but it was shown that the Lagrangian constructed
from the (1, 0)⊕ (0, 1) (or AST) fields admits another kind of ‘gauge’ transformation, namely
(Fµν → Fµν + ∂ν&µ − ∂µ&ν), with some ‘gauge’ vector functions &µ. This becomes the
origin of the possibility of obtaining the quantum states (particles?) of different helicities in
both the ( 1

2 ,
1
2 ) and (1, 0) ⊕ (0, 1) representations.

In our formulation of generalized Maxwell equations these in general divergent terms
can be taken into account explicitly, thus giving additional terms in (4)–(7). As suggested
in [11] they may be applied to explanations of several cosmological puzzles. The detailed
analysis of contradictions between the Weinberg theorem and the Ogievetskiı̆–Polubarinov–
Kalb–Ramond conclusion (and also discussions of [16]) will be given in a separate publication.
Here, I would only like to mention a few assumptions, under which Weinberg derived his
famous theorem.

• The derivation is based on the analysis of the proper Lorentz transformations only. The
discrete symmetry operations of the full Poincaré group (which, for instance, may lead
to the change of the sign of the energy) have not been considered there. Nor have
normalization transformations been considered. However, S Weinberg noted (see the
fourth line from the bottom in [4, p B885]) that ‘(the photon cannot) be associated with
vector potential ( 1

2 ,
1
2 ), . . . until we broaden our notion what we mean by a Lorentz

transformation’.
• Weinberg used the non-semi-simple structure of the little group for m = 0 particles.
• The derivation assumes a particular choice of the coordinate frame, namely p = (0, 0, p3)

and p3 = |p|‡.

† The possibility of appearance of additional mass factors in commutation relations was also analysed by us in the
recent series of papers.
‡ As one can see, unpolarized classicalE andB depend indeed on the choice of the coordinate system, equations (21)
and (24).
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• The derivation does not assume that the AST field is related to 4-vector fields by a
certain derivative operator. Neither does it present its explicit forms (obtained from the
Bargmann–Wigner procedure, for instance) or normalization fixing of this 4-vector.

Finally, the intrinsic angular momentum operator of the electromagnetic field (which can
be found on the basis of the Noether theorem) contains the coefficient functions which belong
to different representations of the Lorentz group,S ∼ E×A, and it acts in the Fock space [15].
Furthermore, the condition (35) Wµ = kpµ is not the only condition which can be imposed
for massless particles. Namely, as stressed by Korff in [16] the Pauli–Lubanski vector may be
a spacelike vector in this case, which would correspond to an ‘infinite-spin’ representation.

Finally, we would like to add some words to the Dirac derivation of equations (30)–(33)
of the Gersten paper [1] and their analysis. We derived the formula (for spin 1)

[Si (S · p)]jm = [piI jm − i[S × p]i,jm − pmδij ] (26)

with i being the vector index and j,m being the matrix indices. Hence, from the equation
(k = 1)

{kpt + Sxpx + Sypy + Szpz}ψ = 0 (27)

multiplying subsequently by Sx , Sy and Sz one can obtain in the case S = 1

{px + Sxpt − iSypz + iSzpy}jmψm − (p · ψ)δxj = 0 (28)

{py + Sypt − iSzpx + iSxpz}jmψm − (p · ψ)δyj = 0 (29)

{pz + Szpt − iSxpy + iSypx}jmψm − (p · ψ)δzj = 0. (30)

One can see from the above that the equations (31)–(33) of [1] can be considered as the
consequence of equation (30) of [1] and additional the ‘transversality condition’ p · ψ = 0
in the case of the spin-1 consideration. So, it is not surprising that they are equivalent to the
complete set of Maxwell’s equations. They are obtained after multiplications by corresponding
S matrices. However, the crucial mathematical problem with such a multiplication is that the
S matrices for boson spins are singular, det Sx = det Sy = det Sz ≡ 0, which makes the above
procedure doubtful† and leaves room for possible generalizations. Moreover, the right-hand
side of equation (30) of [1] may also be different from zero according to our analysis above.

The conclusion of my paper is that, unfortunately, the possible consequences following
from Gersten’s equation (9) have not been explored in full; on this basis we would like to correct
his conclusion and his claim in the abstract of [1]. It is the generalized Maxwell equations
(many versions of which have been proposed during the last 100 years, see, for instance, [17])
that should be used as a guideline for proper interpretations of quantum theories.
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